The Elegant Universe
A Theory of Everything?
Some physicists believe string theory
may unify the forces of nature
:::by Brian Greene:::
The fundamental particles of the universe that physicists have identified—electrons, neutrinos, quarks, and so on—are the "letters" of all matter. Just like their linguistic counterparts, they appear to have no further internal substructure. String theory proclaims otherwise. According to string theory, if we could examine these particles with even greater precision—a precision many orders of magnitude beyond our present technological capacity—we would find that each is not pointlike but instead consists of a tiny, one-dimensional loop. Like an infinitely thin rubber band, each particle contains a vibrating, oscillating, dancing filament that physicists have named a string.
In the figure, we illustrate this essential idea of string theory by starting with an ordinary piece of matter, an apple, and repeatedly magnifying its structure to reveal its ingredients on ever smaller scales. String theory adds the new microscopic layer of a vibrating loop to the previously known progression from atoms through protons, neutrons, electrons, and quarks.
Although it is by no means obvious, this simple replacement of point-particle material constituents with strings resolves the incompatibility between quantum mechanics and general relativity (which, as currently formulated, cannot both be right). String theory thereby unravels the central Gordian knot of contemporary theoretical physics. This is a tremendous achievement, but it is only part of the reason string theory has generated such excitement.
watch the 3-hour documentary here!
Some physicists believe string theory
may unify the forces of nature
:::by Brian Greene:::
The fundamental particles of the universe that physicists have identified—electrons, neutrinos, quarks, and so on—are the "letters" of all matter. Just like their linguistic counterparts, they appear to have no further internal substructure. String theory proclaims otherwise. According to string theory, if we could examine these particles with even greater precision—a precision many orders of magnitude beyond our present technological capacity—we would find that each is not pointlike but instead consists of a tiny, one-dimensional loop. Like an infinitely thin rubber band, each particle contains a vibrating, oscillating, dancing filament that physicists have named a string.
In the figure, we illustrate this essential idea of string theory by starting with an ordinary piece of matter, an apple, and repeatedly magnifying its structure to reveal its ingredients on ever smaller scales. String theory adds the new microscopic layer of a vibrating loop to the previously known progression from atoms through protons, neutrons, electrons, and quarks.
Although it is by no means obvious, this simple replacement of point-particle material constituents with strings resolves the incompatibility between quantum mechanics and general relativity (which, as currently formulated, cannot both be right). String theory thereby unravels the central Gordian knot of contemporary theoretical physics. This is a tremendous achievement, but it is only part of the reason string theory has generated such excitement.
watch the 3-hour documentary here!